Automatic Normalization of Word Variations in Code-Mixed Social Media Text
نویسندگان
چکیده
Social media platforms such as Twitter and Facebook are becoming popular in multilingual societies. This trend induces portmanteau of South Asian languages with English. The blend of multiple languages as code-mixed data has recently become popular in research communities for various NLP tasks. Code-mixed data consist of anomalies such as grammatical errors and spelling variations. In this paper, we leverage the contextual property of words where the different spelling variation of words share similar context in a large noisy social media text. We capture different variations of words belonging to same context in an unsupervised manner using distributed representations of words. Our experiments reveal that preprocessing of the code-mixed dataset based on our approach improves the performance in state-of-the-art part-ofspeech tagging (POS-tagging) and sentiment analysis tasks.
منابع مشابه
POS Tagging of English-Hindi Code-Mixed Social Media Content
Code-mixing is frequently observed in user generated content on social media, especially from multilingual users. The linguistic complexity of such content is compounded by presence of spelling variations, transliteration and non-adherance to formal grammar. We describe our initial efforts to create a multi-level annotated corpus of Hindi-English codemixed text collated from Facebook forums, an...
متن کاملRecurrent Neural Network based Part-of-Speech Tagger for Code-Mixed Social Media Text
This paper describes Centre for Development of Advanced Computing’s (CDACM) submission to the shared task’Tool Contest on POS tagging for CodeMixed Indian Social Media (Facebook, Twitter, and Whatsapp) Text’, collocated with ICON-2016. The shared task was to predict Part of Speech (POS) tag at word level for a given text. The codemixed text is generated mostly on social media by multilingual us...
متن کاملIdentifying Languages at the Word Level in Code-Mixed Indian Social Media Text
Language identification at the document level has been considered an almost solved problem in some application areas, but language detectors fail in the social media context due to phenomena such as utterance internal code-switching, lexical borrowings, and phonetic typing; all implying that language identification in social media has to be carried out at the word level. The paper reports a stu...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملRevisiting Automatic Transliteration Problem for Code-Mixed Romanized Indian Social Media Text
Although automatic Transliteration for Indian languages is a well studied paradigm, but availab le t ransliteration techniques fail in the Indian social media context due to phenomena such as wordplay, creative spelling, codemixing, and phonetic romanized typing; all implying that transliteration for Indian social media text has to be revisited. The paper reports an init ial study on automatic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018